Jackknife Empirical Likelihood for the Accelerated Failure Time Model with Censored Data
نویسندگان
چکیده
Kendall and Gehan estimating functions are used to estimate the regression parameter in accelerated failure time (AFT) model with censored observations. The accelerated failure time model is the preferred survival analysis method because it maintains a consistent association between the covariate and the survival time. The jackknife empirical likelihood method is used because it overcomes computation difficulty by circumventing the construction of the nonlinear constraint. Jackknife empirical likelihood turns the statistic of interest into a sample mean based on jackknife pseudo-values. U-statistic approach is used to construct the confidence intervals for the regression parameter. We conduct a simulation study to compare the Wald-type procedure, the empirical likelihood, and the jackknife empirical likelihood in terms of coverage probability and average length of confidence intervals. Jackknife empirical likelihood method has a better performance and overcomes the under-coverage problem of the Wald-type method. A real data is also used to illustrate the proposed methods. INDEX WORDS: Confidence interval, Coverage probability, Jackknife empirical likelihood, Rightcensoring, U-statistic, Kendall’s estimating equation Gehan, Logrank JACKKNIFE EMPIRICAL LIKELIHOOD FOR THE ACCELERATED FAILURE TIME MODEL WITH CENSORED DATA
منابع مشابه
Failure Process Modeling with Censored Data in Accelerated Life Tests
Manufacturers need to evaluate the reliability of their products in order to increase the customer satisfaction. Proper analysis of reliability also requires an effective study of the failure process of a product, especially its failure time. So, the Failure Process Modeling (FPM) plays a key role in the reliability analysis of the system that has been less focused on. This paper introduces a f...
متن کاملJackknife Empirical Likelihood for Smoothed Weighted Rank Regression with Censored Data
Rank regression is a highly-efficient and robust approach to estimate regression coefficients and to make inference in the presence of outlying survival times. Heller (2007) developed a smoothed weighted rank regression function, which is used to estimate the regression parameter vector in an accelerated failure time model with right censored data. This function can be expressed as a U -statist...
متن کاملDesign and Analysis of Step Stress Accelerated Life Tests for Censored Data}
Life testing often is consuming a very long time for testing. Therefore, the engineers and statisticians are looking for some approaches to reduce the running time. There is a recommended method for reducing the time of failure, such that the stress level of the test units will increase, and then they will fail earlier than normal operating conditions. These approaches are called accelerated li...
متن کاملMonitoring Lognormal Reliability Data in a Two-Stage Process Using Accelerated Failure Time Model
The reliability data is getting used to monitor and improve the quality of products or services. Nowadays, most of products or services are the results of processes with dependent stages referred to as multi-stage process. In these processes, the quality characteristics are affected by the quality characteristics in the previous stages, called as cascade property. In some cases, it is not possi...
متن کاملEmpirical Likelihood Analysis for the Heteroscedastic Accelerated Failure Time Model
In this manuscript, we discuss the distinction of two types of data generating scheme for the accelerated failure time model. We identify two different empirical likelihood formulations under random right censoring, case-wise and residual-wise, each reflecting the relevant features of the stochastic model assumed to have generated the data. We specifically propose the case-wise empirical likeli...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Communications in Statistics - Simulation and Computation
دوره 44 شماره
صفحات -
تاریخ انتشار 2015